Autofaagia on keha viis kahjustatud rakkude asendamine uute ja tervete rakkudega.
Autofaagia peamised eelised on selle vananemisvastased omadused ning on tuntud kui keha vananemisprotsessi tagasikeeramise viis ja nooremate loomine. Autofaagia on paastumise üks peamisi eeliseid tervisele.
Uuringud on näidanud, et sulforafaan soodustab autofaagiat kogu kehas.
Põletik on keha reaktsioon erinevatele vigastustele, kuid mängib ka olulist rolli mõne kroonilise haiguse puhul.
Põletik on vananemise üks põhjuseid ning selliste haiguste aluseks nagu näiteks vähk, diabeet, südamehaigused, depressioon ja dementsus.
Uuringud näitavad, et sulforafaan vähendab erinevaid põletiku markereid, mis mõjutavad meie tervist, energiataset ja üldist heaolu.
Uuringud on näidanud, et Sulforafaan suurendab detoksifitseerimise teise faasi ensüüme, mis aitavad organismil eemaldada kantserogeene ning muid mürkaineid, näiteks pestitsiidides leiduvaid.
Detoksifitseerimise kohta võid rohkem lugeda siit blogist.
Sulforafaani kaitsefunktsioonid aktiveerivad signaalmolekuli NRF2, mis suurendab rakkude võimet kohaneda mitmesuguste keskkonnamürkidega ning ellu jääda.
Sulforafaan aitab kehal näiteks benseeni eemaldada, mis on üks hullemaid mürkaineid (autode heitgaasid, sigaretisuits ja õhusaaste).
Köögivilju sisaldav dieet on üks peamisi soovitusi kehakaalu reguleerimiseks, kuna need sisaldavad vähe kaloreid ja on toitaineterikkad.
Uuringud on näidanud, et sulforafaan suurendab pruuni rasvkude (“pruun rasv”) hulka, mis aitab kaasa kehakaalu langetamisele.
Sulforafaan suurendab ka leptiini reageerimisvõimet, mis vähendab nälga.
Uuringud on näidanud sulforafaani kasulikku mõju südame ja veresoonkonna tervisele ning inimestel, kes tarbivad piisavas koguses sulforafaani on madalam südamehaiguste risk.
Positiivne mõju tuleneb sulforafaani mõjust “halvale kolesteroolile” ning selle põletikuvastastest ja antioksüdantsetest omadustest, mida peetakse südame ja veresoonkonna haiguste riskifaktoriteks.
Uuringud on näidanud, et sulforafaan võib vähendada meestel eesnäärmevähki haigestumise riski ja vähi progresseerumist.
Sulforafaan võib vähendada naistel rinnavähki haigestumise riski.
Ühe uuringu tulemused tõid välja, et sulforafaani tarvitanud suitsetajatel oli madalam risk haigestuda kopsuvähki. Hetkel on käimas täiendavad uuringud sulforafaani mõjust kopsuvähile.
Teine uuring on näidanud, et sulforafaani tarbinud inimesed elasid põievähi üle suurema tõenäosusega kui need, kes tarbisid sulforafaani vähe või üldse mitte.
Sulforafaan kaitseb ülitähtsat vähivastast geeni (p53). P53 geen on praegustes vähi ennetamise ja ravi uuringutes kesksel kohal. Selle ülitähtsa geeni kaitse näitab sulforafaani potentsiaalselt väga olulist rolli mitmete vähkide ravis.
Uuringud on näidanud, et sulforafaan võib oluliselt leevendada autismi sümptomeid nii täiskasvanutel kui lastel.
Sulforafaan võib aktiveerida geene, mis kaitsevad rakke põletiku, oksüdatiivse stressi ja DNA kahjustuste eest, mis on seotud autismiga.
Hetkel on käimas rohkem uuringuid sulforafaani seosest autismispektri häirega.
Viited:
- Benedict, A. L., Knatko, E. V., & Dinkova-Kostova, A. T. (2012). The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis, 33(12), 2457–2466. https://doi.org/10.1093/carcin/bgs293
- Saw, C. L., Huang, M. T., Liu, Y., Khor, T. O., Conney, A. H., & Kong, A. N. (2011). Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Molecular carcinogenesis, 50(6), 479–486. https://doi.org/10.1002/mc.20725
- Herman-Antosiewicz, A., Johnson, D. E., & Singh, S. V. (2006). Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer research, 66(11), 5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
- Liu, H., Smith, A. J., Ball, S. S., Bao, Y., Bowater, R. P., Wang, N., & Michael Wormstone, I. (2017). Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. Journal of molecular medicine (Berlin, Germany), 95(5), 553–564. https://doi.org/10.1007/s00109-016-1502-4
- Liu, H. J., Wang, L., Kang, L., Du, J., Li, S., & Cui, H. X. (2018). Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology, 51(2), 528–542. https://doi.org/10.1159/000495274
- Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., Ji, B. T., Milne, G. L., Cai, Q., Zhang, X., Gao, Y. T., Zheng, W., & Yang, G. (2014). Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics, 114(5), 700–8.e2. https://doi.org/10.1016/j.jand.2013.12.019
- Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., Saretzki, G., Fox, C., Lawless, C., Anderson, R., Hewitt, G., Pender, S. L., Fullard, N., Nelson, G., Mann, J., van de Sluis, B., Mann, D. A., & von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature communications, 2, 4172. https://doi.org/10.1038/ncomms5172
- Arai, Y., Martin-Ruiz, C. M., Takayama, M., Abe, Y., Takebayashi, T., Koyasu, S., Suematsu, M., Hirose, N., & von Zglinicki, T. (2015). Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine, 2(10), 1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
- Navarro, S. L., Schwarz, Y., Song, X., Wang, C. Y., Chen, C., Trudo, S. P., Kristal, A. R., Kratz, M., Eaton, D. L., & Lampe, J. W. (2014). Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. The Journal of nutrition, 144(11), 1850–1857. https://doi.org/10.3945/jn.114.197434
- Parvin Mirmiran, Zahra Bahadoran, Farhad Hosseinpanah, Amitis Keyzad, Fereidoun Azizi. (2012). Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods, Volume 4, Issue 4, Pages 837-841, ISSN 1756-4646,
https://doi.org/10.1016/j.jff.2012.05.012 - Egner, P. A., Chen, J. G., Zarth, A. T., Ng, D. K., Wang, J. B., Kensler, K. H., Jacobson, L. P., Muñoz, A., Johnson, J. L., Groopman, J. D., Fahey, J. W., Talalay, P., Zhu, J., Chen, T. Y., Qian, G. S., Carmella, S. G., Hecht, S. S., & Kensler, T. W. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research (Philadelphia, Pa.), 7(8), 813–823. https://doi.org/10.1158/1940-6207.CAPR-14-0103
- Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 10(9), 949–954
- Boddupalli, S., Mein, J. R., Lakkanna, S., & James, D. R. (2012). Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Frontiers in genetics, 3, 7. https://doi.org/10.3389/fgene.2012.00007
- Riedl, M. A., Saxon, A., & Diaz-Sanchez, D. (2009). Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clinical immunology (Orlando, Fla.), 130(3), 244–251. https://doi.org/10.1016/j.clim.2008.10.007
- Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis, 33(1), 101–107. https://doi.org/10.1093/carcin/bgr229
- Zhang, H. Q., Chen, S. Y., Wang, A. S., Yao, A. J., Fu, J. F., Zhao, J. S., Chen, F., Zou, Z. Q., Zhang, X. H., Shan, Y. J., & Bao, Y. P. (2016). Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular nutrition & food research, 60(10), 2185–2197. https://doi.org/10.1002/mnfr.201500915
- Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., Fuke, N., Zhuge, F., Ni, Y., Nagashimada, M., Takahashi, C., Suganuma, H., Kaneko, S., & Ota, T. (2017). Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes, 66(5), 1222–1236. https://doi.org/10.2337/db16-0662
- Shawky, N. M., & Segar, L. (2018). Sulforaphane improves leptin responsiveness in high-fat high-sucrose diet-fed obese mice. European journal of pharmacology, 835, 108–114. https://doi.org/10.1016/j.ejphar.2018.07.050
- Armah, C. N., Derdemezis, C., Traka, M. H., Dainty, J. R., Doleman, J. F., Saha, S., Leung, W., Potter, J. F., Lovegrove, J. A., & Mithen, R. F. (2015). Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular nutrition & food research, 59(5), 918–926. https://doi.org/10.1002/mnfr.201400863
- Bahadoran, Z., Mirmiran, P., Hosseinpanah, F., Rajab, A., Asghari, G., & Azizi, F. (2012). Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes research and clinical practice, 96(3), 348–354. https://doi.org/10.1016/j.diabres.2012.01.009
- Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., & Kurashige, A. (2004). Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. BioFactors (Oxford, England), 22(1-4), 271–275. https://doi.org/10.1002/biof.5520220154
- Axelsson, A. S., Tubbs, E., Mecham, B., Chacko, S., Nenonen, H. A., Tang, Y., Fahey, J. W., Derry, J., Wollheim, C. B., Wierup, N., Haymond, M. W., Friend, S. H., Mulder, H., & Rosengren, A. H. (2017). Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science translational medicine, 9(394), eaah4477. https://doi.org/10.1126/scitranslmed.aah4477
- Tubbs, E., Axelsson, A. S., Vial, G., Wollheim, C. B., Rieusset, J., & Rosengren, A. H. (2018). Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Molecular and cellular endocrinology, 461, 205–214. https://doi.org/10.1016/j.mce.2017.09.016
- Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxidative medicine and cellular longevity, 2015, 407580. https://doi.org/10.1155/2015/407580
- Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., Cai, H., Gao, Y. T., & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition, 94(1), 240–246. https://doi.org/10.3945/ajcn.110.009340
- Evans P. C. (2011). The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. The EPMA journal, 2(1), 9–14. https://doi.org/10.1007/s13167-011-0064-3
- Xin, Y., Bai, Y., Jiang, X., Zhou, S., Wang, Y., Wintergerst, K. A., Cui, T., Ji, H., Tan, Y., & Cai, L. (2018). Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox biology, 15, 405–417. https://doi.org/10.1016/j.redox.2017.12.016
- Sedlak, T. W., Nucifora, L. G., Koga, M., Shaffer, L. S., Higgs, C., Tanaka, T., Wang, A. M., Coughlin, J. M., Barker, P. B., Fahey, J. W., & Sawa, A. (2018). Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular neuropsychiatry, 3(4), 214–222. https://doi.org/10.1159/000487639
- Brown, R. H., Reynolds, C., Brooker, A., Talalay, P., & Fahey, J. W. (2015). Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respiratory research, 16(1), 106. https://doi.org/10.1186/s12931-015-0253-z
- Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. https://doi.org/10.1016/j.canlet.2008.04.018
- Cipolla, B. G., Mandron, E., Lefort, J. M., Coadou, Y., Della Negra, E., Corbel, L., Le Scodan, R., Azzouzi, A. R., & Mottet, N. (2015). Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy. Cancer prevention research (Philadelphia, Pa.), 8(8), 712–719. https://doi.org/10.1158/1940-6207.CAPR-14-0459
- Maria H Traka, Antonietta Melchini, Jack Coode-Bate, Omar Al Kadhi, Shikha Saha, Marianne Defernez, Perla Troncoso-Rey, Helen Kibblewhite, Carmel M O’Neill, Federico Bernuzzi, Laura Mythen, Jackie Hughes, Paul W Needs, Jack R Dainty, George M Savva, Robert D Mills, Richard Y Ball, Colin S Cooper, Richard F Mithen, Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial, The American Journal of Clinical Nutrition, Volume 109, Issue 4, April 2019, Pages 1133–1144, https://doi.org/10.1093/ajcn/nqz012
- Jennifer H. Cohen, Alan R. Kristal, Janet L. Stanford, Fruit and Vegetable Intakes and Prostate Cancer Risk, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 1, 5 January 2000, Pages 61–68, https://doi.org/10.1093/jnci/92.1.61
- Bosetti, C., Filomeno, M., Riso, P., Polesel, J., Levi, F., Talamini, R., Montella, M., Negri, E., Franceschi, S., & La Vecchia, C. (2012). Cruciferous vegetables and cancer risk in a network of case-control studies. Annals of oncology : official journal of the European Society for Medical Oncology, 23(8), 2198–2203. https://doi.org/10.1093/annonc/mdr604
- Tang, L., Zirpoli, G. R., Jayaprakash, V., Reid, M. E., McCann, S. E., Nwogu, C. E., Zhang, Y., Ambrosone, C. B., & Moysich, K. B. (2010). Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC cancer, 10, 162. https://doi.org/10.1186/1471-2407-10-162
- Abbaoui, B., Riedl, K. M., Ralston, R. A., Thomas-Ahner, J. M., Schwartz, S. J., Clinton, S. K., & Mortazavi, A. (2012). Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Molecular nutrition & food research, 56(11), 1675–1687. https://doi.org/10.1002/mnfr.201200276
- Lynch, R., Diggins, E. L., Connors, S. L., Zimmerman, A. W., Singh, K., Liu, H., Talalay, P., & Fahey, J. W. (2017). Sulforaphane from Broccoli Reduces Symptoms of Autism: A Follow-up Case Series from a Randomized Double-blind Study. Global advances in health and medicine, 6, 2164957X17735826. https://doi.org/10.1177/2164957X17735826
- Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15550-5. https://doi.org/10.1073/pnas.1416940111
- McGuinness, G., & Kim, Y. (2020). Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI journal, 19, 892–903. https://doi.org/10.17179/excli2020-2487