Mitmed uuringud näitavad, et Sulforafaan võib pakkuda kaitset UVA ja UVB põletike, päikesepõletuse ja nahakahjustuste eest. 
Sulforafaan on tugev antioksüdant, mis aitab leevendada nahapõletikku.
Põletik on seotud paljude nahahaigustega ja on peamine põhjus enneaegse vananemise ilmingutele ning võib muuta naha välimuse tuhmiks ja väsinuks.

1 , 2

Autofaagia on keha viis kahjustatud rakkude asendamine uute ja tervete rakkudega.
Autofaagia peamised eelised on selle vananemisvastased omadused ning on tuntud kui keha vananemisprotsessi tagasikeeramise viis ja nooremate loomine. Autofaagia on paastumise üks peamisi eeliseid tervisele.
Uuringud on näidanud, et sulforafaan soodustab autofaagiat kogu kehas.

3 , 4 , 5

Põletik on keha reaktsioon erinevatele vigastustele, kuid mängib ka olulist rolli mõne kroonilise haiguse puhul.
Põletik on vananemise üks põhjuseid ning selliste haiguste aluseks nagu näiteks vähk, diabeet, südamehaigused, depressioon ja dementsus.
Uuringud näitavad, et sulforafaan vähendab erinevaid põletiku markereid, mis mõjutavad meie tervist, energiataset ja üldist heaolu.

6 , 7 , 8 ,9 , 10

Uuringud on näidanud, et Sulforafaan suurendab detoksifitseerimise teise faasi ensüüme, mis aitavad organismil eemaldada kantserogeene ning muid mürkaineid, näiteks pestitsiidides leiduvaid.
Detoksifitseerimise kohta võid rohkem lugeda siit blogist.
Sulforafaani kaitsefunktsioonid aktiveerivad signaalmolekuli NRF2, mis suurendab rakkude võimet kohaneda mitmesuguste keskkonnamürkidega ning ellu jääda.
Sulforafaan aitab kehal näiteks benseeni eemaldada, mis on üks hullemaid mürkaineid (autode heitgaasid, sigaretisuits ja õhusaaste).

11 , 12 , 13 , 14 , 15

Köögivilju sisaldav dieet on üks peamisi soovitusi kehakaalu reguleerimiseks, kuna need sisaldavad vähe kaloreid ja on toitaineterikkad.
Uuringud on näidanud, et sulforafaan suurendab pruuni rasvkude (“pruun rasv”) hulka, mis aitab kaasa kehakaalu langetamisele.
Sulforafaan suurendab ka leptiini reageerimisvõimet, mis vähendab nälga.

16 , 17 , 18

Uuringud on näidanud, et Sulforafaan vähendab LDL (“halva kolesterooli”) taset ja suurendab HDL (“hea kolesterooli”) taset.

19 , 20 , 21

Sulforafaan aitab säilitada tervislikku veresuhkru taset.
Sulforafaan aitab ka 2. tüübi diabeediga inimestel vähendada vere glükoosisisaldust.

22 , 23

Uuringud on näidanud sulforafaani kasulikku mõju südame ja veresoonkonna tervisele ning inimestel, kes tarbivad piisavas koguses sulforafaani on madalam südamehaiguste risk.
Positiivne mõju tuleneb sulforafaani mõjust “halvale kolesteroolile” ning selle põletikuvastastest ja antioksüdantsetest omadustest, mida peetakse südame ja veresoonkonna haiguste riskifaktoriteks.

24 , 25 , 26 , 27

Sulforafaan on kaudne antioksüdant. See suurendab rakkude antioksüdantset võimekust vähemalt 2 mehhanismi abil.
Uuringud on näidanud, et sulforafaan kutsub esile teise faasi detoksifitseerimisensüüme ja aktiveerib olulisi antioksüdante nagu näiteks glutatioon ja SOD.

28 , 29

Uuringud on näidanud, et sulforafaan võib vähendada meestel eesnäärmevähki haigestumise riski ja vähi progresseerumist.
Sulforafaan võib vähendada naistel rinnavähki haigestumise riski.
Ühe uuringu tulemused tõid välja, et sulforafaani tarvitanud suitsetajatel oli madalam risk haigestuda kopsuvähki. Hetkel on käimas täiendavad uuringud sulforafaani mõjust kopsuvähile.
Teine uuring on näidanud, et sulforafaani tarbinud inimesed elasid põievähi üle suurema tõenäosusega kui need, kes tarbisid sulforafaani vähe või üldse mitte.
Sulforafaan kaitseb ülitähtsat vähivastast geeni (p53). P53 geen on praegustes vähi ennetamise ja ravi uuringutes kesksel kohal. Selle ülitähtsa geeni kaitse näitab sulforafaani potentsiaalselt väga olulist rolli mitmete vähkide ravis.

30 , 31 , 32 , 33 , 34 , 35 , 36

Uuringud on näidanud, et sulforafaan võib oluliselt leevendada autismi sümptomeid nii täiskasvanutel kui lastel.
Sulforafaan võib aktiveerida geene, mis kaitsevad rakke põletiku, oksüdatiivse stressi ja DNA kahjustuste eest, mis on seotud autismiga.
Hetkel on käimas rohkem uuringuid sulforafaani seosest autismispektri häirega.

37 , 38 , 39

Viited:

  1. Benedict, A. L., Knatko, E. V., & Dinkova-Kostova, A. T. (2012). The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis33(12), 2457–2466. https://doi.org/10.1093/carcin/bgs293
  2. Saw, C. L., Huang, M. T., Liu, Y., Khor, T. O., Conney, A. H., & Kong, A. N. (2011). Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Molecular carcinogenesis50(6), 479–486. https://doi.org/10.1002/mc.20725
  3. Herman-Antosiewicz, A., Johnson, D. E., & Singh, S. V. (2006). Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer research66(11), 5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
  4. Liu, H., Smith, A. J., Ball, S. S., Bao, Y., Bowater, R. P., Wang, N., & Michael Wormstone, I. (2017). Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. Journal of molecular medicine (Berlin, Germany)95(5), 553–564. https://doi.org/10.1007/s00109-016-1502-4
  5. Liu, H. J., Wang, L., Kang, L., Du, J., Li, S., & Cui, H. X. (2018). Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology51(2), 528–542. https://doi.org/10.1159/000495274
  6. Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., Ji, B. T., Milne, G. L., Cai, Q., Zhang, X., Gao, Y. T., Zheng, W., & Yang, G. (2014). Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics114(5), 700–8.e2. https://doi.org/10.1016/j.jand.2013.12.019
  7. Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., Saretzki, G., Fox, C., Lawless, C., Anderson, R., Hewitt, G., Pender, S. L., Fullard, N., Nelson, G., Mann, J., van de Sluis, B., Mann, D. A., & von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature communications2, 4172. https://doi.org/10.1038/ncomms5172
  8. Arai, Y., Martin-Ruiz, C. M., Takayama, M., Abe, Y., Takebayashi, T., Koyasu, S., Suematsu, M., Hirose, N., & von Zglinicki, T. (2015). Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine2(10), 1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
  9. Navarro, S. L., Schwarz, Y., Song, X., Wang, C. Y., Chen, C., Trudo, S. P., Kristal, A. R., Kratz, M., Eaton, D. L., & Lampe, J. W. (2014). Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. The Journal of nutrition144(11), 1850–1857. https://doi.org/10.3945/jn.114.197434
  10. Parvin Mirmiran, Zahra Bahadoran, Farhad Hosseinpanah, Amitis Keyzad, Fereidoun Azizi. (2012). Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods, Volume 4, Issue 4, Pages 837-841, ISSN 1756-4646,
    https://doi.org/10.1016/j.jff.2012.05.012
  11. Egner, P. A., Chen, J. G., Zarth, A. T., Ng, D. K., Wang, J. B., Kensler, K. H., Jacobson, L. P., Muñoz, A., Johnson, J. L., Groopman, J. D., Fahey, J. W., Talalay, P., Zhu, J., Chen, T. Y., Qian, G. S., Carmella, S. G., Hecht, S. S., & Kensler, T. W. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research (Philadelphia, Pa.)7(8), 813–823. https://doi.org/10.1158/1940-6207.CAPR-14-0103
  12. Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology10(9), 949–954
  13. Boddupalli, S., Mein, J. R., Lakkanna, S., & James, D. R. (2012). Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Frontiers in genetics3, 7. https://doi.org/10.3389/fgene.2012.00007
  14. Riedl, M. A., Saxon, A., & Diaz-Sanchez, D. (2009). Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clinical immunology (Orlando, Fla.)130(3), 244–251. https://doi.org/10.1016/j.clim.2008.10.007
  15. Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis33(1), 101–107. https://doi.org/10.1093/carcin/bgr229
  16. Zhang, H. Q., Chen, S. Y., Wang, A. S., Yao, A. J., Fu, J. F., Zhao, J. S., Chen, F., Zou, Z. Q., Zhang, X. H., Shan, Y. J., & Bao, Y. P. (2016). Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular nutrition & food research60(10), 2185–2197. https://doi.org/10.1002/mnfr.201500915
  17. Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., Fuke, N., Zhuge, F., Ni, Y., Nagashimada, M., Takahashi, C., Suganuma, H., Kaneko, S., & Ota, T. (2017). Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes66(5), 1222–1236. https://doi.org/10.2337/db16-0662
  18. Shawky, N. M., & Segar, L. (2018). Sulforaphane improves leptin responsiveness in high-fat high-sucrose diet-fed obese mice. European journal of pharmacology835, 108–114. https://doi.org/10.1016/j.ejphar.2018.07.050
  19. Armah, C. N., Derdemezis, C., Traka, M. H., Dainty, J. R., Doleman, J. F., Saha, S., Leung, W., Potter, J. F., Lovegrove, J. A., & Mithen, R. F. (2015). Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular nutrition & food research59(5), 918–926. https://doi.org/10.1002/mnfr.201400863
  20. Bahadoran, Z., Mirmiran, P., Hosseinpanah, F., Rajab, A., Asghari, G., & Azizi, F. (2012). Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes research and clinical practice96(3), 348–354. https://doi.org/10.1016/j.diabres.2012.01.009
  21. Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., & Kurashige, A. (2004). Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. BioFactors (Oxford, England)22(1-4), 271–275. https://doi.org/10.1002/biof.5520220154
  22. Axelsson, A. S., Tubbs, E., Mecham, B., Chacko, S., Nenonen, H. A., Tang, Y., Fahey, J. W., Derry, J., Wollheim, C. B., Wierup, N., Haymond, M. W., Friend, S. H., Mulder, H., & Rosengren, A. H. (2017). Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science translational medicine9(394), eaah4477. https://doi.org/10.1126/scitranslmed.aah4477
  23. Tubbs, E., Axelsson, A. S., Vial, G., Wollheim, C. B., Rieusset, J., & Rosengren, A. H. (2018). Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Molecular and cellular endocrinology461, 205–214. https://doi.org/10.1016/j.mce.2017.09.016
  24. Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxidative medicine and cellular longevity2015, 407580. https://doi.org/10.1155/2015/407580
  25. Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., Cai, H., Gao, Y. T., & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition94(1), 240–246. https://doi.org/10.3945/ajcn.110.009340
  26. Evans P. C. (2011). The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. The EPMA journal2(1), 9–14. https://doi.org/10.1007/s13167-011-0064-3
  27. Xin, Y., Bai, Y., Jiang, X., Zhou, S., Wang, Y., Wintergerst, K. A., Cui, T., Ji, H., Tan, Y., & Cai, L. (2018). Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox biology15, 405–417. https://doi.org/10.1016/j.redox.2017.12.016
  28. Sedlak, T. W., Nucifora, L. G., Koga, M., Shaffer, L. S., Higgs, C., Tanaka, T., Wang, A. M., Coughlin, J. M., Barker, P. B., Fahey, J. W., & Sawa, A. (2018). Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular neuropsychiatry3(4), 214–222. https://doi.org/10.1159/000487639
  29. Brown, R. H., Reynolds, C., Brooker, A., Talalay, P., & Fahey, J. W. (2015). Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respiratory research16(1), 106. https://doi.org/10.1186/s12931-015-0253-z
  30. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. https://doi.org/10.1016/j.canlet.2008.04.018
  31. Cipolla, B. G., Mandron, E., Lefort, J. M., Coadou, Y., Della Negra, E., Corbel, L., Le Scodan, R., Azzouzi, A. R., & Mottet, N. (2015). Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy. Cancer prevention research (Philadelphia, Pa.)8(8), 712–719. https://doi.org/10.1158/1940-6207.CAPR-14-0459
  32. Maria H Traka, Antonietta Melchini, Jack Coode-Bate, Omar Al Kadhi, Shikha Saha, Marianne Defernez, Perla Troncoso-Rey, Helen Kibblewhite, Carmel M O’Neill, Federico Bernuzzi, Laura Mythen, Jackie Hughes, Paul W Needs, Jack R Dainty, George M Savva, Robert D Mills, Richard Y Ball, Colin S Cooper, Richard F Mithen, Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial, The American Journal of Clinical Nutrition, Volume 109, Issue 4, April 2019, Pages 1133–1144, https://doi.org/10.1093/ajcn/nqz012
  33. Jennifer H. Cohen, Alan R. Kristal, Janet L. Stanford, Fruit and Vegetable Intakes and Prostate Cancer Risk, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 1, 5 January 2000, Pages 61–68, https://doi.org/10.1093/jnci/92.1.61
  34. Bosetti, C., Filomeno, M., Riso, P., Polesel, J., Levi, F., Talamini, R., Montella, M., Negri, E., Franceschi, S., & La Vecchia, C. (2012). Cruciferous vegetables and cancer risk in a network of case-control studies. Annals of oncology : official journal of the European Society for Medical Oncology23(8), 2198–2203. https://doi.org/10.1093/annonc/mdr604
  35. Tang, L., Zirpoli, G. R., Jayaprakash, V., Reid, M. E., McCann, S. E., Nwogu, C. E., Zhang, Y., Ambrosone, C. B., & Moysich, K. B. (2010). Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC cancer10, 162. https://doi.org/10.1186/1471-2407-10-162
  36. Abbaoui, B., Riedl, K. M., Ralston, R. A., Thomas-Ahner, J. M., Schwartz, S. J., Clinton, S. K., & Mortazavi, A. (2012). Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Molecular nutrition & food research56(11), 1675–1687. https://doi.org/10.1002/mnfr.201200276
  37. Lynch, R., Diggins, E. L., Connors, S. L., Zimmerman, A. W., Singh, K., Liu, H., Talalay, P., & Fahey, J. W. (2017). Sulforaphane from Broccoli Reduces Symptoms of Autism: A Follow-up Case Series from a Randomized Double-blind Study. Global advances in health and medicine6, 2164957X17735826. https://doi.org/10.1177/2164957X17735826
  38. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15550-5. https://doi.org/10.1073/pnas.1416940111
  39. McGuinness, G., & Kim, Y. (2020). Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI journal19, 892–903. https://doi.org/10.17179/excli2020-2487