Several studies demonstrate that Sulforaphane can provide protection against UVA and UVB inflammation, sunburn, and skin damage.

Sulforaphane is a potent antioxidant that neutralizes the inflammation in the skin.

Inflammation triggers many skin conditions and is a major contributor to signs of premature aging and can make skin appear dull and tired.


1 , 2

Autophagy – body’s way of cleaning out damaged cells to regenerate newer, healthier cells.

The main benefits of autophagy seem to come in the form of anti-aging principles. It’s best known as the body’s way of turning the clock back and creating younger cells.

Autophagy is one of the main health benefits of fasting. SFN has been shown to promote autophagy throughout the body.


3 , 4 , 5

Inflammation is the body’s response to injury but it can also play a role in some chronic diseases.

Inflammation is a driver of aging and underlies illnesses like cancer, diabetes, heart disease, depression and dementia.

Research has shown that sulforaphane reduces various markers of inflammation. These markers have an effect on overall health, energy level and cognition.


6 , 7 , 8 ,9 , 10

Sulforaphane increases phase 2 detoxification enzymes and helps the body eliminate various toxins, including benzene.

(Read more about detox genes in this quick blog summary).

Benzene is one of the worst toxins and is commonly found in car exhausts, cigarette smoke and air pollution.


11 , 12 , 13 , 14 , 15

A vegetable-rich diet is one of the main recommendations for weight management as they are low in calories and high in nutrients.

Research has shown that sulforaphane increases brown adipose tissue (“brown fat”), which contributes to weight loss.

Sulforaphane also increases leptin responsiveness, which decreases hunger.


16 , 17 , 18

Studies have shown that Sulforaphane reduces LDL cholesterol (“bad cholesterol”) and increases HDL cholesterol (“good cholesterol”).


19 , 20 , 21

Sulforaphane helps to maintain blood sugar at healthy levels.

Sulforaphane also helps people with type 2 diabetes to reduce their blood glucose levels.


22 , 23

Sulforaphane has been shown to positively affect cardiovascular health and that people who consume higher levels of sulforaphane have lower risk of heart disease.

The positive effect come from sulforaphane’s influence on “bad cholesterol” and its anti inflammatory and antioxidant properties, which are considered as risk factors for cardiovascular disease.


24 , 25 , 26 , 27

Sulforaphane is an indirect antioxidant. It boosts the antioxidant capacity of cells by at least 2 mechanisms.

Research has shown that sulforaphane induces phase 2 detoxification enzymes and can increase important antioxidants like glutathione and SOD.


28 , 29

Studies have shown that sulforaphane may reduce a man’s risk of getting prostate cancer and may reduce cancer progression.

Research has also shown that sulforaphane may reduce a woman’s risk of getting breast cancer.

One study showed that smokers who consumed sulforaphane had a lower risk of getting lung cancer. Additional studies on sulforaphane’s influence on lung cancer are currently underway.

Another study showed that people who consumed sulforaphane were more likely to survive bladder cancer compared to those who consumed little or no sulforaphane.

Sulforaphane protects a key anti-cancer gene (p53). The p53 gene is currently central to cancer prevention and treatment studies. Sulforaphane’s protection of this crucial gene indicates potentially a very important role in the treatment of a wide range of cancers.


30 , 31 , 32 , 33 , 34 , 35 , 36

Studies have shown that sulforaphane can significantly reduce symptoms of autism in both young adults and children.

Sulforaphane has the potential to activate genes that protect cells against inflammation, oxidative stress, and DNA damage, which are linked with autism.

There are currently more studies underway on sulforaphane’s link with autism spectrum disorder.


37 , 38 , 39

REFERENCES:

  1. Benedict, A. L., Knatko, E. V., & Dinkova-Kostova, A. T. (2012). The indirect antioxidant sulforaphane protects against thiopurine-mediated photooxidative stress. Carcinogenesis33(12), 2457–2466. https://doi.org/10.1093/carcin/bgs293
  2. Saw, C. L., Huang, M. T., Liu, Y., Khor, T. O., Conney, A. H., & Kong, A. N. (2011). Impact of Nrf2 on UVB-induced skin inflammation/photoprotection and photoprotective effect of sulforaphane. Molecular carcinogenesis50(6), 479–486. https://doi.org/10.1002/mc.20725
  3. Herman-Antosiewicz, A., Johnson, D. E., & Singh, S. V. (2006). Sulforaphane causes autophagy to inhibit release of cytochrome C and apoptosis in human prostate cancer cells. Cancer research66(11), 5828–5835. https://doi.org/10.1158/0008-5472.CAN-06-0139
  4. Liu, H., Smith, A. J., Ball, S. S., Bao, Y., Bowater, R. P., Wang, N., & Michael Wormstone, I. (2017). Sulforaphane promotes ER stress, autophagy, and cell death: implications for cataract surgery. Journal of molecular medicine (Berlin, Germany)95(5), 553–564. https://doi.org/10.1007/s00109-016-1502-4
  5. Liu, H. J., Wang, L., Kang, L., Du, J., Li, S., & Cui, H. X. (2018). Sulforaphane-N-Acetyl-Cysteine Induces Autophagy Through Activation of ERK1/2 in U87MG and U373MG Cells. Cellular physiology and biochemistry : international journal of experimental cellular physiology, biochemistry, and pharmacology51(2), 528–542. https://doi.org/10.1159/000495274
  6. Jiang, Y., Wu, S. H., Shu, X. O., Xiang, Y. B., Ji, B. T., Milne, G. L., Cai, Q., Zhang, X., Gao, Y. T., Zheng, W., & Yang, G. (2014). Cruciferous vegetable intake is inversely correlated with circulating levels of proinflammatory markers in women. Journal of the Academy of Nutrition and Dietetics114(5), 700–8.e2. https://doi.org/10.1016/j.jand.2013.12.019
  7. Jurk, D., Wilson, C., Passos, J. F., Oakley, F., Correia-Melo, C., Greaves, L., Saretzki, G., Fox, C., Lawless, C., Anderson, R., Hewitt, G., Pender, S. L., Fullard, N., Nelson, G., Mann, J., van de Sluis, B., Mann, D. A., & von Zglinicki, T. (2014). Chronic inflammation induces telomere dysfunction and accelerates ageing in mice. Nature communications2, 4172. https://doi.org/10.1038/ncomms5172
  8. Arai, Y., Martin-Ruiz, C. M., Takayama, M., Abe, Y., Takebayashi, T., Koyasu, S., Suematsu, M., Hirose, N., & von Zglinicki, T. (2015). Inflammation, But Not Telomere Length, Predicts Successful Ageing at Extreme Old Age: A Longitudinal Study of Semi-supercentenarians. EBioMedicine2(10), 1549–1558. https://doi.org/10.1016/j.ebiom.2015.07.029
  9. Navarro, S. L., Schwarz, Y., Song, X., Wang, C. Y., Chen, C., Trudo, S. P., Kristal, A. R., Kratz, M., Eaton, D. L., & Lampe, J. W. (2014). Cruciferous vegetables have variable effects on biomarkers of systemic inflammation in a randomized controlled trial in healthy young adults. The Journal of nutrition144(11), 1850–1857. https://doi.org/10.3945/jn.114.197434
  10. Parvin Mirmiran, Zahra Bahadoran, Farhad Hosseinpanah, Amitis Keyzad, Fereidoun Azizi. (2012). Effects of broccoli sprout with high sulforaphane concentration on inflammatory markers in type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Journal of Functional Foods, Volume 4, Issue 4, Pages 837-841, ISSN 1756-4646,
    https://doi.org/10.1016/j.jff.2012.05.012
  11. Egner, P. A., Chen, J. G., Zarth, A. T., Ng, D. K., Wang, J. B., Kensler, K. H., Jacobson, L. P., Muñoz, A., Johnson, J. L., Groopman, J. D., Fahey, J. W., Talalay, P., Zhu, J., Chen, T. Y., Qian, G. S., Carmella, S. G., Hecht, S. S., & Kensler, T. W. (2014). Rapid and sustainable detoxication of airborne pollutants by broccoli sprout beverage: results of a randomized clinical trial in China. Cancer prevention research (Philadelphia, Pa.)7(8), 813–823. https://doi.org/10.1158/1940-6207.CAPR-14-0103
  12. Brooks, J. D., Paton, V. G., & Vidanes, G. (2001). Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology10(9), 949–954
  13. Boddupalli, S., Mein, J. R., Lakkanna, S., & James, D. R. (2012). Induction of phase 2 antioxidant enzymes by broccoli sulforaphane: perspectives in maintaining the antioxidant activity of vitamins a, C, and e. Frontiers in genetics3, 7. https://doi.org/10.3389/fgene.2012.00007
  14. Riedl, M. A., Saxon, A., & Diaz-Sanchez, D. (2009). Oral sulforaphane increases Phase II antioxidant enzymes in the human upper airway. Clinical immunology (Orlando, Fla.)130(3), 244–251. https://doi.org/10.1016/j.clim.2008.10.007
  15. Kensler, T. W., Ng, D., Carmella, S. G., Chen, M., Jacobson, L. P., Muñoz, A., Egner, P. A., Chen, J. G., Qian, G. S., Chen, T. Y., Fahey, J. W., Talalay, P., Groopman, J. D., Yuan, J. M., & Hecht, S. S. (2012). Modulation of the metabolism of airborne pollutants by glucoraphanin-rich and sulforaphane-rich broccoli sprout beverages in Qidong, China. Carcinogenesis33(1), 101–107. https://doi.org/10.1093/carcin/bgr229
  16. Zhang, H. Q., Chen, S. Y., Wang, A. S., Yao, A. J., Fu, J. F., Zhao, J. S., Chen, F., Zou, Z. Q., Zhang, X. H., Shan, Y. J., & Bao, Y. P. (2016). Sulforaphane induces adipocyte browning and promotes glucose and lipid utilization. Molecular nutrition & food research60(10), 2185–2197. https://doi.org/10.1002/mnfr.201500915
  17. Nagata, N., Xu, L., Kohno, S., Ushida, Y., Aoki, Y., Umeda, R., Fuke, N., Zhuge, F., Ni, Y., Nagashimada, M., Takahashi, C., Suganuma, H., Kaneko, S., & Ota, T. (2017). Glucoraphanin Ameliorates Obesity and Insulin Resistance Through Adipose Tissue Browning and Reduction of Metabolic Endotoxemia in Mice. Diabetes66(5), 1222–1236. https://doi.org/10.2337/db16-0662
  18. Shawky, N. M., & Segar, L. (2018). Sulforaphane improves leptin responsiveness in high-fat high-sucrose diet-fed obese mice. European journal of pharmacology835, 108–114. https://doi.org/10.1016/j.ejphar.2018.07.050
  19. Armah, C. N., Derdemezis, C., Traka, M. H., Dainty, J. R., Doleman, J. F., Saha, S., Leung, W., Potter, J. F., Lovegrove, J. A., & Mithen, R. F. (2015). Diet rich in high glucoraphanin broccoli reduces plasma LDL cholesterol: Evidence from randomised controlled trials. Molecular nutrition & food research59(5), 918–926. https://doi.org/10.1002/mnfr.201400863
  20. Bahadoran, Z., Mirmiran, P., Hosseinpanah, F., Rajab, A., Asghari, G., & Azizi, F. (2012). Broccoli sprouts powder could improve serum triglyceride and oxidized LDL/LDL-cholesterol ratio in type 2 diabetic patients: a randomized double-blind placebo-controlled clinical trial. Diabetes research and clinical practice96(3), 348–354. https://doi.org/10.1016/j.diabres.2012.01.009
  21. Murashima, M., Watanabe, S., Zhuo, X. G., Uehara, M., & Kurashige, A. (2004). Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one-week intake of broccoli sprouts. BioFactors (Oxford, England)22(1-4), 271–275. https://doi.org/10.1002/biof.5520220154
  22. Axelsson, A. S., Tubbs, E., Mecham, B., Chacko, S., Nenonen, H. A., Tang, Y., Fahey, J. W., Derry, J., Wollheim, C. B., Wierup, N., Haymond, M. W., Friend, S. H., Mulder, H., & Rosengren, A. H. (2017). Sulforaphane reduces hepatic glucose production and improves glucose control in patients with type 2 diabetes. Science translational medicine9(394), eaah4477. https://doi.org/10.1126/scitranslmed.aah4477
  23. Tubbs, E., Axelsson, A. S., Vial, G., Wollheim, C. B., Rieusset, J., & Rosengren, A. H. (2018). Sulforaphane improves disrupted ER-mitochondria interactions and suppresses exaggerated hepatic glucose production. Molecular and cellular endocrinology461, 205–214. https://doi.org/10.1016/j.mce.2017.09.016
  24. Bai, Y., Wang, X., Zhao, S., Ma, C., Cui, J., & Zheng, Y. (2015). Sulforaphane Protects against Cardiovascular Disease via Nrf2 Activation. Oxidative medicine and cellular longevity2015, 407580. https://doi.org/10.1155/2015/407580
  25. Zhang, X., Shu, X. O., Xiang, Y. B., Yang, G., Li, H., Gao, J., Cai, H., Gao, Y. T., & Zheng, W. (2011). Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. The American journal of clinical nutrition94(1), 240–246. https://doi.org/10.3945/ajcn.110.009340
  26. Evans P. C. (2011). The influence of sulforaphane on vascular health and its relevance to nutritional approaches to prevent cardiovascular disease. The EPMA journal2(1), 9–14. https://doi.org/10.1007/s13167-011-0064-3
  27. Xin, Y., Bai, Y., Jiang, X., Zhou, S., Wang, Y., Wintergerst, K. A., Cui, T., Ji, H., Tan, Y., & Cai, L. (2018). Sulforaphane prevents angiotensin II-induced cardiomyopathy by activation of Nrf2 via stimulating the Akt/GSK-3ß/Fyn pathway. Redox biology15, 405–417. https://doi.org/10.1016/j.redox.2017.12.016
  28. Sedlak, T. W., Nucifora, L. G., Koga, M., Shaffer, L. S., Higgs, C., Tanaka, T., Wang, A. M., Coughlin, J. M., Barker, P. B., Fahey, J. W., & Sawa, A. (2018). Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Molecular neuropsychiatry3(4), 214–222. https://doi.org/10.1159/000487639
  29. Brown, R. H., Reynolds, C., Brooker, A., Talalay, P., & Fahey, J. W. (2015). Sulforaphane improves the bronchoprotective response in asthmatics through Nrf2-mediated gene pathways. Respiratory research16(1), 106. https://doi.org/10.1186/s12931-015-0253-z
  30. Clarke JD, Dashwood RH, Ho E. Multi-targeted prevention of cancer by sulforaphane. Cancer Lett. 2008 Oct 8;269(2):291-304. https://doi.org/10.1016/j.canlet.2008.04.018
  31. Cipolla, B. G., Mandron, E., Lefort, J. M., Coadou, Y., Della Negra, E., Corbel, L., Le Scodan, R., Azzouzi, A. R., & Mottet, N. (2015). Effect of Sulforaphane in Men with Biochemical Recurrence after Radical Prostatectomy. Cancer prevention research (Philadelphia, Pa.)8(8), 712–719. https://doi.org/10.1158/1940-6207.CAPR-14-0459
  32. Maria H Traka, Antonietta Melchini, Jack Coode-Bate, Omar Al Kadhi, Shikha Saha, Marianne Defernez, Perla Troncoso-Rey, Helen Kibblewhite, Carmel M O’Neill, Federico Bernuzzi, Laura Mythen, Jackie Hughes, Paul W Needs, Jack R Dainty, George M Savva, Robert D Mills, Richard Y Ball, Colin S Cooper, Richard F Mithen, Transcriptional changes in prostate of men on active surveillance after a 12-mo glucoraphanin-rich broccoli intervention—results from the Effect of Sulforaphane on prostate CAncer PrEvention (ESCAPE) randomized controlled trial, The American Journal of Clinical Nutrition, Volume 109, Issue 4, April 2019, Pages 1133–1144, https://doi.org/10.1093/ajcn/nqz012
  33. Jennifer H. Cohen, Alan R. Kristal, Janet L. Stanford, Fruit and Vegetable Intakes and Prostate Cancer Risk, JNCI: Journal of the National Cancer Institute, Volume 92, Issue 1, 5 January 2000, Pages 61–68, https://doi.org/10.1093/jnci/92.1.61
  34. Bosetti, C., Filomeno, M., Riso, P., Polesel, J., Levi, F., Talamini, R., Montella, M., Negri, E., Franceschi, S., & La Vecchia, C. (2012). Cruciferous vegetables and cancer risk in a network of case-control studies. Annals of oncology : official journal of the European Society for Medical Oncology23(8), 2198–2203. https://doi.org/10.1093/annonc/mdr604
  35. Tang, L., Zirpoli, G. R., Jayaprakash, V., Reid, M. E., McCann, S. E., Nwogu, C. E., Zhang, Y., Ambrosone, C. B., & Moysich, K. B. (2010). Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. BMC cancer10, 162. https://doi.org/10.1186/1471-2407-10-162
  36. Abbaoui, B., Riedl, K. M., Ralston, R. A., Thomas-Ahner, J. M., Schwartz, S. J., Clinton, S. K., & Mortazavi, A. (2012). Inhibition of bladder cancer by broccoli isothiocyanates sulforaphane and erucin: characterization, metabolism, and interconversion. Molecular nutrition & food research56(11), 1675–1687. https://doi.org/10.1002/mnfr.201200276
  37. Lynch, R., Diggins, E. L., Connors, S. L., Zimmerman, A. W., Singh, K., Liu, H., Talalay, P., & Fahey, J. W. (2017). Sulforaphane from Broccoli Reduces Symptoms of Autism: A Follow-up Case Series from a Randomized Double-blind Study. Global advances in health and medicine6, 2164957X17735826. https://doi.org/10.1177/2164957X17735826
  38. Singh K, Connors SL, Macklin EA, Smith KD, Fahey JW, Talalay P, Zimmerman AW. Sulforaphane treatment of autism spectrum disorder (ASD). Proc Natl Acad Sci U S A. 2014 Oct 28;111(43):15550-5. https://doi.org/10.1073/pnas.1416940111
  39. McGuinness, G., & Kim, Y. (2020). Sulforaphane treatment for autism spectrum disorder: A systematic review. EXCLI journal19, 892–903. https://doi.org/10.17179/excli2020-2487